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Abstract

Inflammation is thought to play a role in the pathophysiology of cancer. Accumulating evidence from clinical and laboratory-based studies

suggests that substances with anti-inflammatory activities are potential candidates for chemoprevention. Recent advances in cellular and molecular

biology of cancer shed light on components of intracellular signaling cascades that can be potential molecular targets of chemoprevention with

various anti-inflammatory substances. Although cyclooxygenase-2, a primary enzyme that mediates inflammatory responses, has been well

recognized as a molecular target for chemoprevention by both synthetic and natural anti-inflammatory agents, the cellular signaling mechanisms

that associate inflammation and cancer are not still clearly illustrated. Recent studies suggest that h-catenin-mediated signaling, which regulates

developmental processes, may act as a potential link between inflammation and cancer. This review aims to focus on h-catenin-mediated signaling

pathways, particularly in relation to its contribution to carcinogenesis, and the modulation of inappropriately activated h-catenin-mediated

signaling by nonsteroidal anti-inflammatory drugs and chemopreventive phytochemicals possessing anti-inflammatory properties.

D 2005 Elsevier B.V. All rights reserved.
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Fig. 1. A h-catenin degradation pathway. h-catenin exists in cells in two

distinct pools, one being a major membrane-bound form that links E-cadherin

and actin filaments to form cytoskeleton and the other being a free cytosolic

form. Membrane-bound h-catenin may be released into cytosol by tyrosine

phosphorylation of h-catenin [26–28], or by nitric oxide releasing drugs or

MMPs through dissociation of cadherin–catenin complex [32]. In unstimulated

cells, the free cytosolic h-catenin undergoes proteasomal degradation via

phosphorylation and subsequent ubiquitination [144]. Because of such

cytosolic degradation, h-catenin does not translocate to nucleus where h-
catenin interacting partner TCF remains repressed by binding with transcrip-

tional repressors. Cytoplasmic h-catenin is first phosphorylated at serine 45

residue by casein kinase I (CKI) [35–38] and subsequently at serine-33/-37 and

threonine 41 residues by GSK-3h, a member of a multiprotein complex

consisting of APC, GSK-3h and scaffold protein Axin/Conductin. Phosphor-

ylated h-catenin is recognized by the ubiquitin ligase hTrcp followed by

degradation via the 26S proteasomal system [44,45]. Both APC and Axin play

crucial role in this process by binding with different arm repeats of h-catenin,
facilitating GSK-3h-mediated phosphorylation of h-catenin [33,34,39]. h-Cat,
h-Catenin; a-Cat, a-Catenin.
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1. Introduction

Chemoprevention is a non-invasive and cost-effective

strategy in reducing cancer associated morbidity and mortality.

The term Fchemoprevention_ refers to the use of non-toxic

substances to delay, reverse or suppress multistage carcino-

genesis [1]. In spite of immense advances in the understanding

of pathophysiology of cancer and development of new

anticancer therapies, the mortality resulting from common

forms of cancer is still unacceptably high. Chemoprevention

offers a unique scope to intervene in each stage of carcino-

genesis by a wide variety of substances of either natural or

synthetic origin [1]. As inflammation is causally linked to

cancer [2], substances with potent anti-inflammatory activities

are anticipated to exert chemopreventive effects. Recent

progress in unraveling intracellular signaling networks that

contribute to multistage carcinogenesis has made it possible to

identify signal transducing molecules or events as potential

targets for chemoprevention [1].

Although enzymes mediating inflammatory response such

as cyclooxygenase-2 (COX-2) and inducible nitric oxide

synthase (iNOS) have been identified as molecular targets for

the prevention of cancer by anti-inflammatory substances [3],

cellular signaling network linking inflammation and carcino-

genesis has not been fully elucidated. Recently, activation of a

eukaryotic transcription factor nuclear factor-nB (NF-nB) has
been recognized as a bridge between inflammation and cancer

[2]. Besides NF-nB, the activation of an evolutionarily

conserved signaling pathways amplified by soluble Wnt

ligands, which are secreted by activated macrophages [4], has

been implicated in creating such a link. An inappropriate

activation of Wnt-signaling contributes to cellular proliferation

through up-regulation of T Cell Factor (TCF)/h-catenin-
regulated transcription of various proliferative genes [5].

Chronic inflammation-associated accumulation of h-catenin
in prostate cancer suggests that h-catenin may act as a potential

link between inflammation and cancer [6]. h-catenin has been

shown to function as a signaling molecule involved in the

process of development, proliferation and differentiation [7].

Multiple lines of evidences suggest that stabilization and

subsequent nuclear accumulation of h-catenin are positively

linked to various human malignancies [5,8–11]. Several recent

studies have also demonstrated h-catenin as a putative

regulator of COX-2 [12–14], suggesting h-catenin as a

potential target for chemoprevention by anti-inflammatory

substances. The present review focuses on the modulation of

h-catenin-mediated signaling as a plausible mechanism of

chemoprevention by various anti-inflammatory substances.

2. An overview of the B-catenin-mediated signaling

pathway

2.1. Migration of membrane-bound b-catenin to cytosol

The multifunctional protein h-catenin exists in different

subcellular locations depending upon physiological conditions

or cellular environment including cell density [15], types of
cells [16,17], interaction with other signaling molecules [18–

20], disease status [21–23], etc. While the membrane bound h-
catenin interacts with the cytosolic tail of E-cadherin and

connects actin filaments through a-catenin to form cytoskel-

eton, the free cytosolic form predominantly participates in

cellular signaling [24,25] (Fig. 1). The interaction between h-
catenin and E-cadherin is vulnerable to dissociation either by a

point mutation of the phosphorylation site on the cytosolic

domain of E-cadherin or tyrosine phosphorylation of h-catenin
[26–28]. The tyrosine phosphorylation of h-catenin appears to

be mediated via the activation of receptor tyrosine kinases like

the extracellular growth factor (EGF) receptor [29] or

cytoplasmic tyrosine kinases including Src [30]. The inhibition

of constitutive- and Wnt1-induced activation of h-catenin
signaling in human colon cancer and embryonic kidney

(HEK293) cells, respectively, by a tyrosine kinase inhibitor



Fig. 2. Mechanisms of h-catenin stabilization. h-Catenin is stabilized by

several mechanisms including inactivation of GSK-3h, mutation of APC o

Axin [46–48,50], etc. Upon exposure of cells to soluble Wnt ligands, which

interact with frizzled receptor (FR), recruits a small phosphoprotein deshe

velled (Dvl) that inactivates GSK-3h [78]. Stabilized h-catenin translocates to

the nucleus, where it binds to TCF/LEF thereby regulating transcription o

target genes [5]. On the other hand, stimulation of cells with growth factors

leads to receptor tyrosine kinase (RTK)-mediated activation of the PI3K-Ak

pathway. PI3K-mediated phosphorylation of Akt induces to inactivation o

GSK-3h through serine-9 phosphorylation, thereby causing stabilization of h
catenin [145]. Solid line: signaling upon stimulation; Dotted line: signaling

during unstimulated condition.
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STI-571 further indicates that tyrosine phosphorylation of h-
catenin may facilitate h-catenin-mediated signaling [31]. In

addition, the dissociation of E-cadherin-h-catenin complex

may be facilitated by nitric oxide-releasing drugs, through the

activation of matrix metalloproteinases (MMPs) thereby

enriching the cytosolic pool of h-catenin [32].

2.2. Cytosolic degradation of b-catenin

It has been reported that free cytoplasmic h-catenin under-

goes the rapid turnover by a large multiprotein complex

consisting of glycogen synthase kinase-3h (GSK-3h), adeno-
matous polyposis coli (APC) and Axin/Conductin [33,34]. The

h-catenin is phosphorylated at serine 45 residue by casein

kinase (CK)-I [35–38] and subsequently at serine-33/-37 and

threonine 41 residues by GSK-3h [33,39,40]. The phosphor-

ylation of h-catenin at serine-45 residue by CK-I makes h-
catenin a better substrate for GSK-3h [35–38] (Fig. 1).

The tumor suppressor protein APC can also bind to h-
catenin and promotes its degradation [34,41,42]. The associ-

ation of h-catenin with APC appears to be dependent on the

phosphorylation of APC by GSK3h [33,43]. Phosphorylated

h-catenin is ubiquitinated by cellular h-transducin repeat-

containing proteins (h-Trcp) and subsequently degraded by

26S proteasomes [44,45].

2.3. Mechanisms of b-catenin stabilization

h-catenin needs to be stabilized in the cytoplasm to act as a

component of the cellular signaling network (Fig. 2). The

genetic mechanism of h-catenin stabilization involves the

mutation of h-catenin gene (ctnnb1) and/or the mutational

change of its regulatory partners such as APC or Axin [46–50].

While mutation of ctnnb1 has been reported to cause h-catenin
stabilization [51–55], an extensive body of data suggests that

elevated expression of h-catenin and its nuclear localization

may occur without any significant mutational changes in

ctnnb1 [56–60]. According to a study by Li et al. [61],

mutations of ctnnb1 is highly prevalent in rat colon tumors but

less common in rat hepatomas, suggesting that the ctnnb1

mutations occur in a tissue- or organ-specific manner. Besides

stabilization of h-catenin as a consequence of mutational

alterations involving a gain of function of ctnnb1 or a loss of

function of APC, the protein may be stabilized by epigenetic

mechanisms through the inactivation of the upstream regulator

GSK-3h which results from phosphorylation of its serine-9

residue.

2.4. Regulation of gene transcription by b-catenin-mediated
signaling

Once stabilized in cytoplasm, h-catenin translocates into the

nucleus and interacts with TCF/Lymphoid Enhancer Factor

(LEF), a family of high mobility group (HMG) Box proteins

capable of binding to DNA in a sequence-specific manner but

lacking intrinsic transactivation potential [62]. In unstimulated

cells, TCFs remain under repression through interaction with
r

-

f

t

f

-

transcriptional co-repressors such as groucho and histone

deacetylase (HDAC) [63,64]. It has been proposed by Billin

and collaborators [63] that the activation of LEF1-dependent

genes by h-catenin in HEK293 cells involves a two step

mechanism, the first being attenuation of the enzymatic activity

of HDAC1 by h-catenin resulting in the derepression of LEF1

followed by the binding of h-catenin to free LEF1 (Fig. 2).

Nuclear localization of h-catenin and subsequent formation

of the h-catenin-TCF/LEF transcription complex cause en-

hanced transcription of a variety of genes (Fig. 2) encoding

proteins involved in such processes as cell cycle regulation, cell

adhesion and cellular development [5,65]. Genes that undergo

h-catenin/TCF-mediated transactivation include c-myc, cyclin

D1 [66], gastrin [67], MMP-7 [68], keratin1 [69], urokinase

plasminogen activated receptor (uPAR) [70], CD44 [71],

immunoglobulin transcription factor-2 (ITF-2) [72], PPARd
[73] and Fra-1 [70]. Recently, the activation of h-catenin/TCF
signaling has been shown to regulate transcriptional activation

of some other genes including an orphan G-protein coupled

receptor Gpr49 [74] and membrane-type MMP [75]. By

analyzing h-catenin-induced alterations of gene expression

after transduction of either dominant stable h-catenin or its

transactivation-deficient counterpart in primary human hepato-
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cytes, Levy et al. [69] have demonstrated that IL-8 promoter

contains a unique consensus for the TCF binding site that is

critical for IL-8 activation by h-catenin. Moreover, the

existence of a TCF binding element (TBE) in the COX-2

promoter region raises the possibility of h-catenin to regulate

COX-2 expression [12,13], which is down-regulated by a

variety of anti-inflammatory substances.

3. Role of B-catenin-mediated signaling in carcinogenesis

Accumulating data from both in vitro and in vivo studies

suggest the implication of h-catenin-mediated signaling in

tumorigenesis [76–80]. Cytosolic stabilization and subsequent

nuclear translocation of h-catenin resulting in transcriptional

activation of a variety of TCF-regulated proliferative genes and

oncogenes appear to be a potential cause of various human

cancers [5,9,10,78,81–85]. The contributory role of aberrant h-
catenin signaling, as a consequence of ctnnb1 gene mutation,

has been documented in various cancers including colon

carcinoma [86–88], hepatocellular carcinoma [89–91], rat

hepatic carcinoma [92], human uterine endometrial carcinoma

[51,53,93,94], pituitary adenoma [95], and cancers of prostate

[54], ovary [96,97] and urinary bladder [52]. The involvement

of h-catenin signaling, without any appreciable alterations in

ctnnb1 gene, has also been observed in urothelial carcinomas

[60], pilomatricomas [56] and rectal carcinomas [57]. While

several studies have revealed that mutations in ctnnb1

frequently occurs in melanoma [98] and lungs carcinoma

[99], other studies report ctnnb1 mutation as a rare event in

these cancers [58,59].

As a regulator of intracellular signaling network involved

in oncogenic process, activated h-catenin signaling favors

cellular proliferation as well as exerts anti-apoptotic effects in

various cancers [100]. In a recent study, h-catenin positive

hepatocellular carcinoma derived from phenobarbital-treated

c-myc/transforming growth factor-a transgenic mice dis-

played increased proliferation and the tumor size [101].

Similarly, a correlation between nuclear expression of h-
catenin and an increased incidence and the size of tumors in

patients with hepatocellular carcinoma suggests that altered

expression of h-catenin in hepatocellular carcinoma may

promote malignant progression by stimulating tumor cell

proliferation [102]. According to Shang et al. [103], mutant

h-catenin may promote proliferation and survival ability of

the immortalized murine hepatocyte cell line AML12, but

stabilized h-catenin that mediates enhanced expression of c-

myc and cyclin D1 is not sufficient to cause complete

oncogenic transformation. Several studies have documented a

positive correlation between h-catenin accumulation and

cancer cell proliferation [91,104–107]. Stimulation of Wnt

signaling by the Wnt3a, LiCl or constitutively active S33Y

mutant h-catenin resulted in an increased proliferation of

multiple myeloma cells [104]. The overexpression of E2F1

activity and a loss of p53- and p27-dependent cell cycle

checkpoints were attributed to the enhanced proliferation of

non-small cell lung cancer by activated h-catenin signaling

[105].
A significant correlation between nuclear accumulation of

h-catenin and high proliferation rates of soft tissue sarcomas

[106], hepatocellular carcinoma [91] and basal cell carcinoma

[107] was also reported. Although the accumulation of h-
catenin was observed in 62 % of rat oral epithelial dysplasia

induced by 4-nitroquinoline-1-oxide, there was no significant

difference in h-catenin protein expression [50]. While analyz-

ing the h-catenin abundance and its target gene expression in

transmissible murine colonic hyperplasia, Sellin et al. [108]

observed a significant alterations in subcellular distribution of

h-catenin and increased cellular levels of h-catenin target

genes, such as c-myc and cyclin D1. A wide variety of anti-

inflammatory substances have been shown to inhibit nuclear

accumulation of h-catenin and expression of its target genes

(e.g., c-myc, cyclin D1, c-Jun, etc.) thereby eliciting anti-

proliferative effects [109–112].

4. Down-regulation of inappropriately activated

B-catenin-mediated signaling by anti-inflammatory

substances

Since inflammation is causally linked to carcinogenesis,

substances with potent anti-inflammatory activities are antic-

ipated to exert chemopreventive effects [1,113]. Accumulating

evidence from epidemiologic, clinical and laboratory studies

suggests that nonsteroidal anti-inflammatory agents (NSAIDs)

as well as naturally occurring anti-inflammatory substances

are able to prevent certain forms of cancers [114,115].

Progress in the understanding of molecular mechanisms of

chemoprevention by anti-inflammatory substances led to the

identification of several molecular targets including COX-2

[3,116]. Various molecules of intracellular signaling cascades

regulating COX-2 are targeted by a wide variety of anti-

inflammatory substances. These include a distinct set of

transcription factors such as NF-nB, activator protein 1 (AP-

1), cyclic AMP response element binding protein (CREB),

CCAAT/enhancer binding protein (CEBP), Ets transcription

factors, etc. and their upstream kinases [1,117]. Depending on

the types of stimuli or cells, anti-inflammatory substances

exert chemopreventive activity by down-regulating COX-2

induction through blockade of the activation of either a single

or a combination of transcription factors and related upstream

kinases.

4.1. b-catenin as a putative upstream regulator of COX-2

As mentioned earlier, molecular mechanisms of chemopre-

ventive activities of many anti-inflammatory agents have been

ascribed to their inhibitory effects on COX-2 expression

through down-regulation of the transcription factors such as

NF-nB, AP-1, and their up-stream kinases, known as mitogen-

activated protein kinases (MAPKs) or other kinases involved in

the PI3K/Akt signaling pathway [1]. However, recent studies

suggest that the expression of COX-2 may be regulated by the

h-catenin/TCF-mediated signaling. The first indication of an

interaction between COX-2 and h-catenin pathways came from

studies utilizing APC-mutant mice, which showed an elevated



Fig. 3. Modulation of aberrant h-catenin mediated signaling by anti-

inflammatory substances. Anti-inflammatory substances may exert chemopre-

ventive effects by blocking h-catenin-mediated signaling through several

possible mechanisms, such as increase in E-cadherin expression resulting in an

elevated pool of membrane-bound h-catenin, restoration of GSK-3h activity by

blocking PI3K/Akt- or Wnt/Dvl-mediated inactivation of GSK-3h, promoting

proteasomal degradation of h-catenin, preventing nuclear translocation of h-
catenin, and blocking formation of h-catenin-TCF/LEF complex and/or its

DNA binding.
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level of COX-2 in intestinal polyps, whereas a null mutation of

the COX-2 gene reduced the number and the size of intestinal

tumors [118]. Since APC mutation leads to the stabilization

and nuclear translocation of h-catenin, the reduction of COX-2

protein expression upon addition of wild-type APC to the

APC-mutated HT-29 human colorectal cancer cells [14] and an

increase in basal COX-2 protein and mRNA levels upon

overexpression of h-catenin in murine mammary cell lines

[119] indicate the functional relationship between the h-catenin
signaling pathway and COX-2 expression. Howe et al. [119]

have also suggested that overexpression of Wnt-1 in mouse

mammary epithelial cells may result in significant up-

regulation of COX-2 through the activation of polyoma

enhancer activator-3 (PEA3), an Ets transcription factor

regulating COX-2.

Correlating the up-regulation of COX-2 and nuclear

accumulation of h-catenin in human colorectal cancer cells

characterized by the mutation of APC gene, Dimberg et al.

[120] have suggested that COX-2 is a down-stream target of

the APC/h-catenin/TCF pathway. Further evidence for the

regulation of the expression of COX-2 by h-catenin has been

reported by Kim and colleagues [121], who demonstrated that

the treatment of rabbit articular chondrocytes with interleukin-

1h (IL-1h) increased expression of COX-2. The IL-1h
treatment also induced nuclear accumulation of h-catenin,
which has been further aggravated by the treatment of cells

with the GSK-3h inhibitor or the proteasome inhibitor. These

results indicate that transcriptionally active h-catenin is

sufficient to induce COX-2 expression. The transcriptional

regulation of COX-2 by h-catenin has also been supported by

the study of Araki and colleagues [12], who demonstrated that

the COX-2 promoter contains TCF binding element (TBE) and

that COX-2 was down-regulated after induction of full length

APC in the human colorectal HT29-APC cell line. The same

study also revealed that COX-2 promoter luciferase activity has

been down-regulated by APC in a promoter reporter construct

containing wild type TBE but not with mutant TBE, suggesting

that COX-2 is down-regulated by APC and up-regulated by

nuclear accumulation of h-catenin.

4.2. b-catenin is a target of NSAIDs retaining anticarcinogenic

potential

Emerging evidence supporting the transcriptional regulation

of COX-2 by h-catenin-mediated signaling has led to the

exploration of h-catenin as a molecular target for chemopre-

vention by anti-inflammatory agents (Fig. 3). Various NSAIDs

have been shown to decrease the h-catenin/TCF-mediated

signaling (Table 1) [122]. Dihlmann et al. [109] demonstrated

that the treatment of human colon carcinoma cells either with

indomethacin or aspirin resulted in a decrease in h-catenin/TCF
transcriptional activity and cyclin D1 expression without

disrupting the h-catenin/TCF complex [109]. Dihlmann and

colleagues [123] also demonstrated that treatment of human

colon cancer (SW480 and SW948) cells with aspirin resulted in

the phosphorylation-dependent degradation of h-catenin, but
aspirin-induced degradation of h-catenin in HEK293 cells was
independent of h-catenin phosphorylation. Similarly, an

increased turn over of h-catenin during apoptosis of human

colorectal cancer HCT-116 cells has been reported by Lee et al.

[124]. A decrease in the expression of h-catenin and cyclin D1

in various colorectal cancer cells [110,125] and down-

regulation of DNA binding of h-catenin/TCF in SW480 and

HCT116 cells [125] by indomethacin have been demonstrated.

Recently, Boon et al. [126] demonstrated that treatment with

sulindac for 6 months significantly lowered nuclear accumu-

lation of h-catenin in adenomas from patients with familial

adenomatous polyposis (FAP) in comparison to their pretreat-

ment states. Similarly, a decrease in nuclear accumulation of h-
catenin was evident during sulindac-induced regression of

intestinal tumors, but not colon tumors, in Min+ mice [127].

The chemoprevention of rat colorectal cancer by indometh-

acin, meloxicam or sulindac has been attributed to the

diminished nuclear h-catenin immunoreactivity induced by

these agents [128]. Indomethacin inhibited proliferation,

induced G1 arrest and promoted apoptosis in both COX-2

expressing (HT29, HCA-7, SW480 and HCT116) and COX-2-

negative (SW480 and HCT116) human colorectal cancer cells

[129]. The drug also diminished h-catenin protein expression

suggesting that the down-regulation of h-catenin-mediated



Table 1

Modulation of h-catenin-mediated signaling by NSAIDs

NSAIDs Effect on h-catenin-mediated signaling Cell/Tissue References

Indomethacin , Nuclear h-catenin immunoreactivity Rat colorectal tumors [128]

, Nuclear h-catenin content, , cyclin D1 protein expression SW480 cells [110]

, h-catenin protein expression HT-29, HCA-7, SW480, HCT116 cells [129]

, Expression of h-catenin and cyclin D1, , h-catenin/TCF DNA binding,

j c-Myc expression

SW480 and HCT116 cells [125]

No alterations in subcellular distribution of h-catenin,
No change in h-catenin/TCF DNA binding, , h-catenin/TCF activity

SW948 cells [109]

, Cyclin D1 protein expression SW480, HCT116, LoVo cells [109]

Sulindac , Nuclear h-catenin immunoreactivity Rat colorectal tumors [128]

APC-independent increase in h-catenin/TCF activity SW620 colon cancer cells [135]

, Nuclear h-catenin Adenoma from FAP patients [126]

j Membrane bound h-catenin in intestinal polyp APCD716 mice [118]

, Immunoreactivity of h-catenin Min+ mice [127]

Sulindac sulfide , Nuclear h-catenin content, , cyclin D1 protein expression SW480 cells [110]

, Phosphorylated h-catenin level, , Met and cyclin D1 protein expression,

, h-catenin/TCF activity

DLD1 and SW480 cells [126]

Aspirin No alterations in subcellular distribution of h-catenin,
No change in h-catenin/TCF DNA binding,

SW948 cells [109]

, Cyclin D1 protein expression SW480, HCT116, LoVo cells [109]

, h-catenin/TCF dependent transcription,

j Phosphorylation and degradation of h-catenin,
j Phosphorylation-independent degradation of h-catenin

SW480 cells [123]

j Degradation of h-catenin HCT116 cells [124]

Rofecoxib j Membrane bound h-catenin in intestinal polyp APCD716 mice [118]

No alterations of h-catenin content and cyclin D1 Expression SW480 cells [110]

Diclofenac , Nuclear h-catenin content, , cyclin D1 protein expression,

No correlation between inhibition of cyclin D1 and TCF activity

SW480 cells [110]

Celecoxib No alterations in h-catenin immunoreactivity Rat colorectal tumors [128]

, Frequency and multiplicity of h-catenin AOM-induced aberrant [132]

accumulated crypts, , nuclear h-catenin staining Crypt foci in F344 rats

j Caspase- and proteasome-dependent degradation of h-catenin Caco-2 cells [133]

Meloxicam , Nuclear h-catenin immunoreactivity Rat colorectal tumors [128]

Etodolac j Expression of E-cadherin protein and its mRNA transcript,

No change in h-catenin expression

Caco-2 cells [146]

Nabumetone , h-catenin protein expression,

j Expression of E-cadherin and GSK-3h in uninvolved intestinal mucosa

MIN Mouse [147]

, Expression of cyclin D1 and nuclear h-catenin,
j Expression of E-cadherin and GSK-3h in uninvolved intestinal mucosa

AOM-treated rat [147]
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signaling may be attributed to the antiproliferative/chemopre-

ventive activity of COX-2 inhibitors [129]. More recently,

indomethacin was reported to inhibit growth of human colon

cancer cells HT29, which was accompanied by an enhanced

expression of APC and E-cadherin, and a marked increase in

the relocation of nuclear and cytoplasmic h-catenin to the cell

membrane [130]. A potent selective COX-2 inhibitor cele-

coxib has been found to suppress h-catenin-accumulated

crypts in premalignant lesions of rat colonic epithelium

[131]. While celecoxib decreased 1,2-dimethylhydrazine-in-

duced adenoma and colon carcinoma formation in rats without

any appreciable change in h-catenin immunoreactivity [128], it

prevented the multiplicity of h-catenin-accumulated crypts

with decreased immunostaining for nuclear h-catenin in

azoxymethane-induced aberrant crypt foci in F344 rats [132]

A COX-2-independent mechanism of chemoprevention of

colorectal cancer by celecoxib has recently been reported

[133]. According to this study, treatment of Caco-2 human

colon cancer cells with celecoxib resulted in a caspase- and

proteasome-dependent degradation of h-catenin [133]. Anoth-

er COX-2 selective NSAID rofecoxib enriched the membrane-
bound h-catenin level in polyps from APCD716 mice [118], but

the compound did not cause any change in the levels of h-
catenin or cyclin D1 in SW480 cells [110]. The modulation of

h-catenin-mediated signaling by other NSAIDs such as

meloxicam, diclofenac, etodolac, and nabumetone is summa-

rized in Table 1.

4.3. Suppression of b-catenin-mediated signaling by

chemopreventive phytochemicals

Anti-inflammatory phytochemicals present in our daily diet

have been known to possess chemopreventive potential.

Examples are curcumin from turmeric, epigallocatechin gallate

(EGCG) from green tea, resveratrol from grapes, docosahex-

anoic acid from fish oil, sulforaphane from broccoli, indole-3-

carbinol from cabbage, genistein from soybean, etc. [1]. Besides

NSAIDs, many of these dietary anti-inflammatory substances

target h-catenin-mediated signaling in exerting chemopreven-

tive effects [1,134] (Table 2, Fig. 3). Although an early study

reported that curcumin had no inhibitory effect on h-catenin/
TCF activity in SW480 colon cancer cells [135], the compound



Table 2

Modulation of h-catenin-mediated signaling by chemopreventive phytochemicals

Phytochemicals Effect on h-catenin-mediated signaling Cell/Tissue References

EGCG , h-catenin/TCF transcriptional activity,

, Expression of h-catenin and cyclin D1,

No change in TCF-4 expression

HEK293 cells [148]

White tea/Green tea , Expression of h-catenin, cyclin D1 and c-Jun C57BL/6J-APC (Min+) mice

intestinal tumor

[112]

Sulforaphane j h-catenin responsive reporter activity HEK293 and HCT116 cells [149]

, HDAC activity,

No change in expression of h-catenin and HDAC protein expression

Resveratrol , h-catenin and cyclin D1 expression, , cyclin D1 promoter activity,

, cyclin D1 mRNA

SW480 cells [111]

Curcumin , h-catenin/TCF DNA binding and transcriptional activity,

, c-Myc protein expression, j caspase-mediated cleavage of h-catenin,
HCT116 cells [136]

No alterations in h-catenin/TCF activity SW620 cells [135]

Restoration of E-cadherin and h-catenin Transgenic adenocarcinoma

of mouse prostate model

[150]

Indole-3-carbinol j E-cadherin and h-catenin level MCF-7 and MDA-MB 468 cells [138]

Ursolic acid j h-catenin cleavage, j caspase activation Human prostate epithelial cells [139]

Docosahexanoic acid , h-catenin protein expression, , h-catenin positive cells Caco-2 cells [151]

Genistein , H2O2-induced tyrosine phosphorylation of h-catenin Bovine pulmonary artery endothelial cells [152]

h-Lapachone j h-catenin cleavage, j caspase activation HCT116 cells [140]
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induced apoptosis of p53+/+, p53�/� and p21+/+ HCT116 colon

cancer cells by down-regulating h-catenin/TCF DNA binding

and transactivation, resulting in diminished c-Myc expression

by caspase-3-mediated degradation of h-catenin [136,137]. The
green tea polyphenol EGCG, at a physiologic concentration,

suppressed proliferation of human embryonic kidney (HEK293)

cells by blocking transcriptional activation of h-catenin/TCF
and attenuating the expression of h-catenin and cyclin D1 [112].
A similar effect of white tea and green tea has been observed in

intestinal tumors from C57BL/6J-MIN+ mice. The combination

of sulindac with white or green tea further potentiated the down-

regulation of h-catenin/TCF signal cascade in these tumors

[112]. The growth arrest and the induction of apoptosis in

SW480 cells by resveratrol resulted from down-regulation of h-
catenin protein and its target gene cyclin D1 [111]. Indole-3-

carbinol attenuated migration and invasion of human breast

epithelial cells by restoring the membrane-bound h-catenin pool
through up-regulation of E-cadherin and h-catenin expression

[138]. Some other dietary anti-inflammatory substances have

been shown to induce apoptosis of various colorectal carcinoma

and hepatocarcinoma cells in association with enhanced

caspase-mediated cleavage of h-catenin protein [139,140].

5. Future perspectives

Although inappropriate h-catenin-mediated signaling has

been largely implicated in colorectal carcinogenesis, recent

studies suggest that h-catenin acts as a key player in other

forms of cancer. A prototype tumor promoter 12-O-tetradeca-

noylphorbol-13-acetate (TPA) has been reported to mediate

tyrosine phosphorylation of h-catenin of E-cadherin–h-catenin
complex in the human rectal adenocarcinoma cell line RCM-1

[141]. Furthermore, the treatment of mouse skin with 7,12-

dimethylbenz[a]anthracene and TPA resulted in the inactiva-

tion of GSK-3h [142] and elevated expression of h-catenin
[143] in both papillomas and squamous cell carcinomas,
implicating h-catenin in mouse skin tumor promotion. The

complex mechanism involving the distribution of h-catenin in

different cellular compartments ranging from membrane to

nucleus and strict regulation of this oncoprotein at multiple

intracellular segments by upstream kinases and tumor suppres-

sor proteins indicate the significance of h-catenin as a critical

signaling molecule.

Multiple lines of evidence suggest that an inappropriate

activation of h-catenin-mediated signaling contributes to

carcinogenesis through up-regulation of h-catenin/TCF-regu-
lated proliferative genes. Because of a causal relationship

between inflammation and cancer, attention has been focused

on compounds with anti-inflammatory properties as potential

chemopreventive agents. Recent studies suggest that h-catenin
may act as a putative regulator of COX-2 that has been

recognized as a molecular target for a wide variety of anti-

inflammatory agents. Therefore, h-catenin-mediated signaling,

which acts as a hub in intracellular signaling network, may be

considered as a novel molecular target for chemoprevention by

anti-inflammatory substances. However, considering the indis-

pensable role of h-catenin in the developmental process,

indiscriminate down-regulation of this critical signaling path-

way may confer deleterious effect.
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